SIXTH FORM INDUCTION – FURTHER MATHS

Q1.

Express each of the following in the form a + bi where a and b are real numbers.

(i)
$$(3 + 2i) + (2 - i)$$
.

(ii)
$$(4 + i) - (2 - i)$$
.

(iii)
$$(3 + 2i)(2-i)$$
.

(v)
$$lm (3-2i)$$
.

Q2.

Find x and y if
$$(x + 3i)(2 + yi) = 5 + 5i$$
, and x, $y \in \mathbb{R}$

Q3.

Simplify each of the following expressions into the form a + ib, where a and b are real.

(i)
$$(1 + 6i) (1-3i)$$
.

(ii)
$$(1 + i)^3$$
.

(iii)
$$(1-i)(1+i)$$
.

(iv)
$$(3 + 2i)(3-2i)$$
.

$$(v)(3+7i)-(2+i).$$

Q4.

Solve the equation

$$(1 + i)(x + iy) = -2 + i$$
.

where $x, y \in \mathbb{R}$, by deducing simulationeous equations in x and y.

Q5.

The complex numbers z_1 and z_2 are given by

$$z_1 = p + 2i$$
 and $z_2 = 1 - 2i$

where p is an integer.

(a) Find $\frac{z_1}{z_2}$ in the form a + bi where a and b are real. Give your answer in its simplest form in terms of p.

Given that $\left| \frac{z_1}{z_2} \right| = 13$, (4)

(b) find the possible values of p.

(4)