SIXTH FORM INDUCTION – FURTHER MATHS Q1. Express each of the following in the form a + bi where a and b are real numbers. (i) $$(3 + 2i) + (2 - i)$$. (ii) $$(4 + i) - (2 - i)$$. (iii) $$(3 + 2i)(2-i)$$. (v) $$lm (3-2i)$$. Q2. Find x and y if $$(x + 3i)(2 + yi) = 5 + 5i$$, and x, $y \in \mathbb{R}$ Q3. Simplify each of the following expressions into the form a + ib, where a and b are real. (i) $$(1 + 6i) (1-3i)$$. (ii) $$(1 + i)^3$$. (iii) $$(1-i)(1+i)$$. (iv) $$(3 + 2i)(3-2i)$$. $$(v)(3+7i)-(2+i).$$ Q4. Solve the equation $$(1 + i)(x + iy) = -2 + i$$. where $x, y \in \mathbb{R}$, by deducing simulationeous equations in x and y. Q5. The complex numbers z_1 and z_2 are given by $$z_1 = p + 2i$$ and $z_2 = 1 - 2i$ where p is an integer. (a) Find $\frac{z_1}{z_2}$ in the form a + bi where a and b are real. Give your answer in its simplest form in terms of p. Given that $\left| \frac{z_1}{z_2} \right| = 13$, (4) (b) find the possible values of p. (4)